
D:\Newcomb\Documentation\Newcomb.lwp

MAM 3/3/99 11:22am

Newcomb

A Solar System Ephemeris Program

Marc A. Murison
murison@aa.usno.navy.mil

James L. Hilton
jhilton@aa.usno.navy.mil

Astronomical Applications Department
United States Naval Observatory

3450 Massachusetts Ave, NW
Washington DC 20392

March 3, 1999

TABLE OF CONTENTS

13Index .
12Parameter Adjustment Module Interface .
12Runtime Graphics .
12ICs Database Capabilities .
12Initial Conditions .
12I/O Settings .
12Integrator Settings .
12General Relativity Settings .
12Solar System Settings .
12Integration Module Interface .
12Observation Module Interface .
12Main Program Interface .
12Introduction .
12Chapter 5: The User Interface .
11Ephemeris Generation .
11Frequency Analysis .
11Close Approach Detection .
11Automatic Detection of Mean-Motion Resonances .
11Analysis Submodules .
11An Object Oriented Approach .
11Numerical Integration Algorithms .
11The Lunar Orbit .
11General Relativistic Formulation .
11Newtonian Formulation .
11Physical Model .
11Chapter 4: The Integration Module .
10Nonlinear Parameter Estimation .

9Formal Parameter Errors .
8Linear Parameter Estimation .
8Overview .
8Chapter 3: The Parameter Adjustment Module .
6Observation Types .
6Observing Platforms .
6Introduction .
6Chapter 2: The Observations Module .
5Top-Level Structure .
4Project Outline .
3Program Design and Language Considerations .
3Astronomical Context .
3Introduction .
3Chapter 1: Project Outline and Top Level Program Structure .

2

1. INTRODUCTION

This chapter describes the top-level structure of the planned
Naval Observatory Solar System Ephemeris program, called
Newcomb.1 Newcomb is intended to be the successor of, and
loosely derives its structural inheritance more or less from,
PEP, the Planetary Ephemeris Program at the Smithsonian As-
trophysical Observatory.2 Computer program design and lan-
guage capabilities have advanced far beyond the anticipations
of three and a half decades ago when PEP and the JPL DE pro-
grams were originally developed. (DE and PEP are the only
existing high-precision solar system ephemeris programs.)
Program technology that is several generations out of date,
combined with the practical inability to add further significant
capabilities or modifications to PEP, has been deemed suffi-
cient cause for development of a new ephemeris program. Ad-
ditional motivations are that it is to the USNO’s great advan-
tage to have a comprehensive ephemeris capability in-house,
and that Newcomb will provide a check against PEP and the
JPL DE programs.

2. ASTRONOMICAL CONTEXT

3. PROGRAM DESIGN AND LANGUAGE CONSIDERATIONS

Chief among the advantages of writing a new program is the
opportunity to make use of modern programming and design
technologies, including object-oriented design (OOD) and
object-oriented programming (OOP), as well as graphical user
interfaces (GUIs) and the highly productive “components”
programming associated with rapid application development
(RAD) environments. Newcomb is written entirely in C++,
and development and testing are done entirely within the best
RAD environment currently available.3 We take full advan-
tage of standard OOP/OOD concepts and techniques, includ-
ing data encapsulation, template classes, polymorphism, and,
where necessary, multiple inheritance.

The benefits of a completely object-oriented approach are
many, including faster prototyping and development, fewer
and more easily locatable coding errors, vastly simpler and
more intuitive design, more sophisticated functionality, easily
extensible architecture, and (most importantly) drastically

CHAPTER 1: PROJECT OUTLINE AND TOP LEVEL PROGRAM STRUCTURE

MARC A. MURISON

Astronomical Applications Department
U.S. Naval Observatory, Washington, DC

CHAPTER 1: PROJECT OUTLINE

3

3 http://www.borland.com/bcppbuilder/

2 See http://cfa-www.harvard.edu/~reasen/ssd.html for information about PEP.

1 See http://aa.usno.navy.mil/Newcomb/ for the official Newcomb web site.

Figure 1 — Reference frame hierarchy.

Stellar Reference
Frame

Solar System
Reference Frame

Earth Reference
Frame

Extragalactic
Reference Frame

Quasars
(VLBI, optical)

Local Reference
Frame

Space
Astrometry

Ground
Astrometry

Planetary
Positions

Natural Satellite
Positions

Dynamical
Models

Earth Rotation

VLBI

GPS

GPS

HIPPARCOS

FAME

Where am I? What time is it?

NPOI

- Spacecraft navigation
- Tests of GR
- Celestial mechanics
- Asteroid masses
- Stellar occultations

- Geophysics

Figure 2 — Major dependencies.

Planetary
Ephemerides

Solar System
Reference

Frame

Star Positions

Geodynamics

Asteroid
Motions

Planetary
Motions

Gravity Model

General
Relativity

Time

MilitaryAstronomy

Observations

Application

Theory

Observation

reduced long-term maintenance costs. Another major benefit is
that the program can be brought up and running with minimal
functionality, allowing further capability to be easily and pain-
lessly incorporated as need arises.

Ease of extensibility is largely a result of object-oriented de-
sign, but it is also directly related to how good that design is.
Hence, considerable effort has gone and is still going into the
design of Newcomb. Experience in the software industry over
the last one to two decades abundantly shows that the payoff
later on in terms of maintenance and extensibility is far out of
proportion to the effort expended early on — in the design
stages — of the program life cycle.

The benefits of a RAD environment for development and
testing are also very attractive. Chief among the attractions is
the ease by which it is possible to create highly sophisticated
graphical user interfaces. During design, graphical interface
components — such as buttons, edit fields, toolbars and so on
— are “dropped” onto a window form or dialog box. Useful
properties of the components are settable at design time, in ad-
dition to being available during runtime. It is easy to create
custom components as well. For example, for Newcomb we
designed a custom component that is in fact a fully functional
and self-contained power spectral density (PSD) analysis pack-
age. All that is needed to add a PSD module to a program is to
drop the PSD component onto a form or dialog. Hence, build-
ing, changing, and extending the graphical user interface of a
program is astoundingly easy. This of course spills over and
makes changing or extending major program structural ele-
ments correspondingly painless.

4. PROJECT OUTLINE

In these beginning stages of the Newcomb project, tasks
naturally fall into three main categories: program design, docu-
mentation, and science applications. A rough outline of the
most obvious subjects that must be addressed is:

I. Design Issues
A. numerical integration scheme

1. object-oriented design
2. Integrable objects have knowledge of dynamical

environment as well as the ability to dynamically
evolve in that environment.

B. exception handling
1. all exceptions fully recoverable
2. procedure stack traceback

C. robust parameter estimation
1. Singular Value Decomposition (SVD)
2. swipe a package from elsewhere

D. graphical user interface
1. use GUI application frameworks package (such

as ZAF from Zinc) to ensure platform portability
E. reduction of observations
F. individual class design and testing

II. Science Issues and Projects to Consider
A. asteroids

1. masses from orbital interactions
2. provide ephemerides (services to the community)
3. cumulative effects on planetary motions

a. Asteroids are the largest source of “noise” in
the orbits of Mars, EarthMoon system.

B. lunar motion
1. chaotic dynamics

a. predictions from numerical models
b. comparisons with LLR data

2. radiation pressure [ref]
3. resonant interaction between tidal and GR terms
4. lunar librations

C. Nordtvedt h parameter (anomalous gravitational field
energy effects — i.e., a difference between gravita-
tional and inertial mass proportional to the gravita-
tional binding energy of a body)

D. GR precession
1. lunar orbit
2. Earth’s spin

E. bounds on time variation of the gravitational constant
F. millisecond pulsars

1. derive Earth orbit
G. bounds on dark matter in the solar system?
H. planetary satellites?

1. centroiding vs. satellitederived center of mass
I. other science?

III. Documentation
A. code

1. source documentation model (see TM96-01)
2. interface (“user’s manual”)

B. algorithms
C. physics

1. GR and partial derivatives
D. parameter estimation and error and correlation analy-

sis
E. numerical integration design
F. reduction of observations

CHAPTER 1: PROJECT OUTLINE

4

5. TOP-LEVEL STRUCTURE

The top level process structure of Newcomb is shown in
Figure 3. Basic operation is as follows.

The observations module is responsible for reading input as-
trometric observations and “massaging” them as necessary.
Massaging operations are listed in Chapter 2. The observations
will be of various types (Figure 5), taken at various observing
locations (Figure 4), including spacecraft.

The integration module is responsible for numerically inte-
grating a sophisticated dynamical model of the solar system —
including general relativistic terms, a detailed Earth-Moon sys-
tem, planetary spin vectors including precession and nutation,
and an unlimited number of asteroids — to produce an ephem-
eris.

The model ephemeris is then compared with the observa-
tions in the O-C section of the parameter adjustment module to
produce a set of residuals. The parameter estimator uses the
partial derivatives of the model equations with respect to the
model parameters (including initial conditions) to solve the as-
sociated nonlinear least squares problem for the most probable
set of model parameter values that minimizes the O-C residu-
als.

The adjusted model parameters are then fed back into both
the ephemeris generator and the observation transformation
methods. The data are rereduced as necessary, and a new
ephemeris is generated by the integration module, using the
updated parameter values. These are again combined to pro-
duce a new set of residuals. This process is iterated until the
residuals satisfy predetermined success criteria.

At the end of the iterative process, we will have produced an
ephemeris that best fits the observations, given the model used,
as well as the best-fit model parameters, formal error estimates
of those parameters, and the parameter cross correlations. The

parameter error estimates and parameter correlations are de-
rived from the partial derivatives and the correlation matrix
from the least squares analysis. Experience with PEP has
shown that, normally, at most only a couple or a few iterations
are needed.

CHAPTER 1: PROJECT OUTLINE

5

Figure 3 — Major program processes.

iteration
loop start

massage
observations

integrate eqs.
of motion

form O-C
residuals

parameter
estimator

O-C
eval

iteration
loop end

observations

reduced
observations

ephemeris

parameters

correlation
matrix

observations module

parameter
adjustment

module

integration module

physical
model

observation
models

data

data flow

process

parameter feedback

process flow

calculate
positions

1. INTRODUCTION

Perhaps the most difficult section of the program will be the
module that processes input observations and reduces them to
a form suitable for passage to the O-C section of the parameter
adjustment module (see Figure 5). Essentially, the observa-
tions will be sent to the O-C section in the form of apparent
positions, corrected for various biases, including (but not lim-
ited to):

• catalog corrections
• delay/doppler bias corrections
• coordinate frame fiducialization
• aberration corrections
• nutation and precession

Integral to this section are the specific types of observa-
tional datasets and the specific types of observational plat-
forms. The data and platform types vary widely.

2. OBSERVING PLATFORMS

One must consider the various observing platforms presently
available in the solar system. They are

I. Planet
A. Earth

1. Earth-based observatories
2. Earth orbiters

B. Planetary landers
C. Planetary orbiters

II. Deep space probes (i.e., gravitationally unbound from all
planets and satellites)

Figure 4 shows the object hierarchy of observing platforms.4

The C++ code classes reflect this hierarchy. Each input datas-
tream will contain relevant observing platform information. An
appropriate observing platform object will encapsulate this in-
formation. Each type of platform object also encapsulates the
necessary functionality (referred to as methods) to provide in-
formation needed to manipulate or transform data of the corre-
sponding type (see Figure 6).

For example, planetary observing platform objects know
how to precess and nutate coordinates to a specified epoch.
Each base class contains parameters and functionality common
to all subclasses derived from it. The derived classes contain
only the additional or specialized parameters and functionality
required to handle platforms of a specific kind. For example,
since all planetary platforms have a basic precession and nuta-
tion capability, these methods reside in the base class Planet-
Platform. An EarthPlatform object automatically inherits all
the functionality and data of PlanetPlatform. The EarthPlat-
form object therefore contains only additional abilities, data,
or refinements, for example precession parameters specific to
the Earth. Proper use of inheritance eliminates code duplica-
tion for common tasks in a natural and intuitive way. The in-
heritance mechanism is built into the C++ language and there-
fore requires no enforcement by or special discipline from the
programmer.

Figure 4 intentionally shows only the major class types, in
accord with the introductory nature appropriate to this
Chapter. It is a simple matter to derive further specialized
classes from the base classes shown. For example, one would
derive a VikingOrbiter from OrbiterPlatform.

3. OBSERVATION TYPES

The various observation data types fall naturally into the two
broad categories, timing (in a sense, the radial coordinate from
the observer) and positions (on the sky, i.e. transverse to the
radial direction). The complete breakdown is as follows:

I. Transverse (position)
A. Optical observations

1. Global positions
a. Transit circle

2. Differential positions
3. Occultations

a. Satellite-planet
b. Star-planet
c. Spacecraft-planet

4. Transits
a. Solar
b. Planetary

CHAPTER 2: THE OBSERVATIONS MODULE

MARC A. MURISON

Astronomical Applications Department
U.S. Naval Observatory, Washington, DC

CHAPTER 2: THE OBSERVATIONS MODULE

6

4 Arrows in Figures 2 and 3 point from derived classes to parent (also called base) classes. This is the standard notation.

Figure 4 — Observing platform class hierarchy.

Platform

PlanetPlatform
SpacecraftPlatform

EarthPlatform OrbiterPlatform ProbePlatform

EarthOrbiterPlatform

epoch
central object
local position
local coord origin

precess

nutate

class method

encapsulated data

multiple inheritance

B. VLBI

II. Radial (timing)
A. Doppler observations

1. Oneway
a. Pulsars
b. Spacecraft

2. Twoway
a. Radar
b. Spacecraft

B. Time delay observations
1. LLR
1. Radar

a. Differential radar
b. Radar closure

2. Spacecraft
a. Single
b. Multi

For reasons having mainly to do with datasets that are cur-
rently insufficiently large or insufficiently accurate to have a

substantial effect on ephemeris accuracy, early versions of
Newcomb will not include the observation types shown in light
red. Because extensibility is built into the design of Newcomb,
adding further capabilities as they become necessary will in-
volve minimal effort — there is no need, from a maintenance
standpoint, to include capabilities that are anticipated to go un-
used for a long time. That is, with a good object-oriented de-
sign we do not have to worry so much about “making room”
for anticipated future capabilities. Figure 5 shows the observa-
tion types hierarchy. Figure 6 shows the proposed correspond-
ing object class hierarchy.

Each type of input data stream will contain embedded type
information, and instantiations of the appropriate data objects
will handle the data. The specific objects shown in Figure 3
encapsulate not only the corresponding observational data but
also the functionality required to reduce that data type. For ex-
ample, notice that all datatype objects have, via inheritance
from the base class Observation, platform information and
the ability to handle (say) aberration.

As with Figure 4, Figure 6 is intentionally not complete, es-
pecially regarding encapsulated data and method details. How-
ever, all the important base classes, and their inheritance de-
pendencies, are shown.

CHAPTER 2: THE OBSERVATIONS MODULE

7

Figure 6 — Observational class hierarchy.

ObservationGroup
(virtual)

TransverseObs RadialObs

multiple inheritance

OffsetObs TransitCircleObs

SatSatObs SatPlanetObs

DopplerObs

SpacecraftObsRadarObs

TimeDelayObs

OneWayDoppler TwoWayDoppler

PulsarObs

RangeRadarObs LLRObs

DiffRadarObsDopplerRadarObs

OneWayDopplerSCObs TwoWayDopplerSCObs RangeSCObs

Figure 5 — Observation types.

Observation
Types

Transverse

Radial

Transit Circle

Offset Satellite-Satellite

Satellite-Planet

Doppler

Time Delay

One-Way

Two-Way
Doppler Radar

Pulsar

Two-Way S/C

S/C Ranging

One-Way S/C

Differential Radar

LLR

Radar RangingRadar

Spacecraft

1. OVERVIEW

The parameter adjustment module is relatively straightfor-
ward. The processed observations from the Observations Mod-
ule and the calculated ephemeris data from the Integration
Module are compared, thus forming the O-C residuals. First,
coordinate frame compatibility between the observations and
the synthetic ephemeris is reconciled. The calculated ephem-
eris must be transformed to apparent positions in order to
match the observations. The residuals are characterized, with
statistical and descriptive output going to disk as well as to an
output window on-screen. At this point, outlying data points
can be automatically — or manually — detected and removed.

The core of the module follows with the determination of
parameters via a maximum likelihood estimator. The normal
equations are formed and solved, and the parameters and asso-
ciated formal error estimates are saved. Finally, the residuals
are evaluated, and the module exits with a solution “accept-
ability” code. Figure 7 illustrates the process.

Matrix inversion is accomplished via singular value decom-
position (SVD), which is very robust and offers useful diag-
nostics for ill-conditioned matrices. Singularities are automati-
cally detected and corrected, and the problem parameters are
identified. In essence, if the algorithm encounters an ill-
conditioned matrix, it safely steps around the problem point(s)
and proceeds in such a way as to mine the matrix for the maxi-
mum amount of information. When a singularity (rare in prac-
tice) or degenerate column (not rare!) is encountered, the com-
bination of parameters that led to the fault is easily extracted.
Thus, not only are singularities safely handled, but — more
importantly — parameter combinations to which the data are
insensitive are automatically identified.

It is unusual to encounter a computational method that is this
reliable and blowup-proof. I have already developed and tested
matrix inversion using SVD and incorporated it into the Matrix
utility class (Chapter ??). With regard to Newcomb, SVD is a
“plug’n’play” capability.

In the sections that follow, we present the formalism used
for our least squares estimation of the parameters from the re-
duced observational data. Section 2 introduces linear least
squares, mainly in order to develop the formalism, since in
practice we must perform a nonlinear least squares analysis.
Section 3 derives the equations that give the formal parameter
errors from a linear analysis. Section 4 then discusses the non-
linear least squares method that Newcomb uses.

2. LINEAR PARAMETER ESTIMATION

If the observational errors are uncorrelated, then maximum
likelihood estimation becomes a simple linear least squares es-
timation. We cannot, of course, get away with linear least
squares in actual practice, but it is useful to develop the for-
malism first before presenting the nonlinear least squares for-
malism in section 4.

We will assume that the observational errors are uncorre-
lated and normally distributed. More precisely, the data errors
are assumed to have two components: systematic errors and
random errors. We assume the systematic components are
modeled with bias parameters which will be estimated. It is the
random components which we assume to be uncorrelated and
normally distributed. Hence, the probability of a specific data-
set occurring, given a model with physical and bias parame-n
ters (a vector of length), is the product of the probabilities ofn
the individual data points:N

CHAPTER 3: THE PARAMETER ADJUSTMENT MODULE

MARC A. MURISON

Astronomical Applications Department
U.S. Naval Observatory, Washington, DC

CHAPTER 3: THE PARAMETER ADJUSTMENT MODULE

8

Figure 7 — Parameter adjustment module.

Parameter
Adjustment

retrieve
massaged

observations

retrieve
calculated
ephemeris

calculate O-C
quantities

statistical
characterization

of residuals
statistics

form the
normal

equations

solve the
normal

equations

output

parameters

correlations

determine
parameters

evaluate
residuals

exit TRUEexit FALSE

removal of
outliers

calculate
apparent
positions

(1)P i P
i=1

N

exp − 1
2

y i − y(t i, a)
r i

2

where the yi are the data and is the model function.y(t i, a)
Maximizing the probability means minimizing the negative of
the logarithm of this expression, which within a factor of two
becomes simply

(2)x2 h S
i=1

N
[y i − y(t i, a)]2

r i
2

We recognize minimization of (2) as being equivalent to
minimizing chi-squared, the usual linear least squares method.
For notational convenience, define the summation operator

(3)$ i h S
i=1

N

($)

Thus, (2) can be written

(4)x2 =
[y i − y(t i, a)]2

r i
2

i

When this operator is used, summation is always over the N
observational data points.

Minimization of (4) requires the set of equationsn

(5)− 1
2

Øx2

Øa =
y i − y(t i, a)

r i

Øy(t i, a)
r i Øa

i

= 0

to be satisfied simultaneously. Let the model function have the
generalized representation

(6)y(t, a) = S
k=1

n

akYk(t) h a $ Y(t)

where the are functions of time and the vector Yk(t)
. The basis functions are notY(t) h [Y1(t), Y2(t), ¢, Yn(t)] Yk(t)

restricted to linearity and may have any form (polynomials,
transcendental functions, etc.). The linearity that is important
is in the dependence of the model function on the parameters

 Equation (5) becomesa.

(7)

y i

r i
− S

k=1

n

ak
Yk(t i)

r i

Y(t i)
r i

i

= 0

Define the vector

(8)S h
y i

r i
Z(t i)

i

and the symmetric matrix

(9)A jk h Z j(t i)Zk(ti) i

where, for convenience, we have set

(10)Z(t i) h
Y(t i)
r i

Then (7) becomes

(11)S
k=1

n

A jk ak = S j

or

(12)A $ a = S

Hence, the parameters are determined from the solution vec-
tor

(13)a = A−1 $ S

Equations (12) are called the normal equations. The matrix
 is the covariance matrix. The covariance matrix is theC h A−1

key to formal knowledge of the errors in the parameter esti-
mates, as well as the correlations between the various parame-
ters. Indeed, as we shall see in the next section, the parameter
errors are the diagonal elements of ,C

(14)rk h Ckk

The off-diagonal elements are the cross correlations,

(15)r jk h C jk

It must be stressed that the formal errors represent at best a
lower bound on the “actual” errors, since unmodeled system-
atic errors pollute the process. Indeed, systematic error reduc-
tion is the entire game in this business. Formal errors should
always be viewed in this light.

3. FORMAL PARAMETER ERRORS

This section contains a derivation of (14). We begin with a
statement of propagation of errors, which we then use to define
the formal errors of the parameters. Using the definition (9),
we then arrive at (14).

Suppose we have a scalar function of M parameters,
. Then the variation of f is f (p1, ¢, pM)

(16)Df = S
k=1

M
Øf

Øpk
Dpk h Øf

Øp $ Dp

Now suppose N measurements of the parameters are takenp
and then the function f computed from these observationally
determined parameters. The variance of f is then

(17)r f
2 = 1

N
(f i − … f)2

i

Approximate by from (16). Thenf i − … f Df

(18)

r f
2 = 1

N
(Df)2

i = 1
N

 Øf

Øp $ Dp
2

i

= 1
N

 Sk=1

M
Øf

Øpk

2

Dpk
2

+ S
j, k
j!k

Øf
Øp j

Øf
Øpk

Dp jDpk

i

= S
k

Øf
Øpk

2
1
N

(Dpk)2
i

+S
j, k
j!k

Øf
Øp j

Øf
Øpk

1
N Dp jDpk i

h S
k

Øf
Øpk

2

rk
2 + S

j, k
j!k

Øf
Øp j

Øf
Øpk

r jk
2

If the observations are uncorrelated, the cross terms (double
sum) tend to cancel. Equation (18) describes the propagation
of errors.

Now consider our least squares parameter estimation, eq.
(13). The parameters are quantities determined from Na
measurements, , with measurement errors . In light of[y i] r i

CHAPTER 3: THE PARAMETER ADJUSTMENT MODULE

9

(18), and with a slight abuse of vector notation, we may write
the parameter variance as

(19)ra
2 =

 Øa

Øy i

2

r i
2

i

+

 Øa

Øy i

Øa
Øy j

r ij
2

j

i

We will assume that the observational errors are individu-
ally uncorrelated, . Then we are left withr ij = 0 ≤ i ! j

(20)ra
2 =

 Øa

Øy i

2

r i
2

i

Now, from (13) and (8) we have

(21)a = C $ S = C $
y i

r i
Z(t i)

i

Thus,

(22)Øa
Øy i

= 1
r i

C $ Z(t i)

Hence, (20) becomes

(23)ra
2 = (C $ Z(t i))2

i

The kth component of (23) may be written

(24)rak
2 = [C $ Z(t i)]k [C $ Z(t i)]k i

Since is symmetric,C

(25)rak
2 = [C $ Z(t i)]k [Z(t i) $ C]k i

Interchange the order of summations:

(26)rak
2 = [C $ Z(t i) Z(t i) i $ C]kk

Using (9), we have

(27)

rak
2 = [C $ A $ C]kk

= [C $ C −1 $ C]kk

= [C]kk

which completes the derivation of (14).

4. NONLINEAR PARAMETER ESTIMATION

Consider the condition equations (5). If the model function
is nonlinear in the parameters then the simple separa-y(t, a)
tion, eq. (6), which led to the easily-solved normal equations,
(12), is no longer possible. Our goal is to minimize (4) with re-
spect to variation of the model parameters, despite the nonlin-
ear dependence of the model function on the parameters. To
do this, we will adopt an iterative approach.

Let where are the true (or, more accurately,a h ã + Da, ã
best) values of the parameters. Assume we start with parameter
values that are reasonably close to the best values. We can
then approximate (4) with a truncated Taylor series:

(28)x2(a) l x2(ã) − Da $ B + 1
2 Da $ M $ Da

where

(29)B h −
Øx2

Øa a=ã
and [M] ij h

Øx2

Øa iØa j a=ã

Within the paraboloidal approximation (28), the correction
vector which minimizes is given by the value forDa x2(a)
which the parameter correction gradient vanishes:

(30)
Øx2(a)

ØDa l −B + Da $ M

Hence,

(31)Da = M−1 $ B

where we have used the fact that is symmetric. For and M B M
we calculate

(32)B =
y i − y(t i, a)

r i
2

Øy(t i, a)
Øa

a=ã i

and

(33)

[M] jk =
y i − y(t i, a)

r i
2

Ø2y(t i, a)
Øa jØak a=ã

− 1
r i

2

Øy(t i, a)
Øa j a=ã

Øy(t i, a)
Øak a=ã i

Unfortunately, although the merit function is unitless, the
elements of eqs. (32) and (33) are not unitless (in general).
This can lead too easily to an ill-conditioned matrix when the
parameters exhibit numerically widely disparate units. There-
fore, following Hessler et al.5, let us redefine and in aB M
unitless fashion:

(34)

Bk h − ãk
Øx2

Øak a=ã

= ãk
y i − y(ti, a)

r i
2

Øy(t i, a)
Øak a=ã i

and

(35)

[M] jk h ã j ãk
Øx2

Øa jØak a=ã

= ã j ãk
y i − y(t i, a)

r i
2

Ø2y(t i, a)
Øa jØak a=ã

− 1
r i

2

Øy(t i, a)
Øa j a=ã

Øy(t i, a)
Øak a=ã i

To keep a unitless form for the merit function, define

(36)dak h
ak − ãk

ãk

Using (34) and (35), we can rewrite (28) as

(37)x2(a) l x2(ã) − da $ B + 1
2 da $ M $ da

Requiring

(38)
Øx2(a)
Ø da l −B + da $ M = 0

we have, finally,

(39)da = M−1 $ B

where and are given by (34) and (35). Notice that theB M
form of eqs. (39) is identical to that of eqs. (13). The proce-
dure, then, is:

• Start with an initial set of values for the parameters.
• Calculate the correction via eqs. (39).
• Correct the parameter values.
• Repeat until the values stop changing significantly.

CHAPTER 3: THE PARAMETER ADJUSTMENT MODULE

10

5 J.P. Hessler, D.H. Current, and P.J. Ogren (1996), “A new scheme for calculating weights and describing correlations in nonlinear leastsquares fits”, Computers
in Physics 10, 186.

1. PHYSICAL MODEL

1.1. Newtonian Formulation

1.2. General Relativistic Formulation

1.3. The Lunar Orbit

2. NUMERICAL INTEGRATION ALGORITHMS

3. AN OBJECT-ORIENTED APPROACH

4. ANALYSIS SUBMODULES

4.1. Automatic Detection of Mean-Motion Resonances

4.2. Close Approach Detection

4.3. Frequency Analysis

5. EPHEMERIS GENERATION

CHAPTER 4: THE INTEGRATION MODULE

MARC A. MURISON

Astronomical Applications Department
U.S. Naval Observatory, Washington, DC

CHAPTER 4: THE INTEGRATION MODULE

11

Figure 8 — The integration module.

Integration

initialize the
physical model

integrate the
equations of

motion

parameters

initial
conditions

ephemeris

- body masses
- gravity model

- planets
- asteroids
- natural satellites
- planetary spins

initialize the
integrator

parameters

- integrator type
- accuracy
- start/stop times
- output interval

- planets
- asteroids
- natural satellites

1. INTRODUCTION

2. MAIN PROGRAM INTERFACE

3. OBSERVATION MODULE INTERFACE

4. INTEGRATION MODULE INTERFACE

4.1. Solar System Settings

4.2. General Relativity Settings

4.3. Integrator Settings

4.4. I/O Settings

4.5. Initial Conditions

4.6. ICs Database Capabilities

4.7. Runtime Graphics

5. PARAMETER ADJUSTMENT MODULE INTERFACE

CHAPTER 5: THE USER INTERFACE

MARC A. MURISON

Astronomical Applications Department
U.S. Naval Observatory, Washington, DC

CHAPTER 5: THE USER INTERFACE

12

C

condition equations, 10
covariance matrix, 9

D

Design Issues, 4
Doppler observations, 7

E

extensibility, 7

F

Figure 1, 5
Figure 2, 6
Figure 3, 7
Figure 4, 8
Formal Parameter Errors, 9

H

Hessler, 10

I

Integration Module, 11

J

JPL, 3

L

Linear Parameter Estimation, 8
LLR, 7
Lunar Orbit, 11

M

Matrix utility class, 8
maximum likelihood estimator, 8
merit function, 10

model function, 10

N

Newtonian Formulation, 11
Nonlinear Parameter Estimation, 10
normal equations, 8, 9
Numerical Integration Algorithms, 11

O

object-oriented, 3
Observation Types, 6
Observations, 6
Observations Module, 6
Observing Platforms, 6
O-C, 6, 8
Optical observations, 6

P

Parameter Adjustment Module, 8
PEP, 3. See Also Planetary Ephemeris Program
Physical Model, 11
Planetary Ephemeris Program, 3
Project Outline, 4
propagation of errors, 9

R

Radar closure, 7

S

Science Issues, 4
singular value decomposition, 8
SVD, 8. See Also singular value decomposition

T

Time delay observations, 7
Transits, 6

U

User Interface, 12

INDEX

13

